Mirror of Apache Kafka
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

362 lines
16 KiB

<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<script><!--#include virtual="../js/templateData.js" --></script>
<script id="content-template" type="text/x-handlebars-template">
<h1>Run Streams Demo Application</h1>
<p>
This tutorial assumes you are starting fresh and have no existing Kafka or ZooKeeper data. However, if you have already started Kafka and
ZooKeeper, feel free to skip the first two steps.
</p>
<p>
Kafka Streams is a client library for building mission-critical real-time applications and microservices,
where the input and/or output data is stored in Kafka clusters. Kafka Streams combines the simplicity of
writing and deploying standard Java and Scala applications on the client side with the benefits of Kafka's
server-side cluster technology to make these applications highly scalable, elastic, fault-tolerant, distributed,
and much more.
</p>
<p>
This quickstart example will demonstrate how to run a streaming application coded in this library. Here is the gist
of the <code><a href="https://github.com/apache/kafka/blob/{{dotVersion}}/streams/examples/src/main/java/org/apache/kafka/streams/examples/wordcount/WordCountDemo.java">WordCountDemo</a></code> example code (converted to use Java 8 lambda expressions for easy reading).
</p>
<pre class="brush: java;">
// Serializers/deserializers (serde) for String and Long types
final Serde&lt;String&gt; stringSerde = Serdes.String();
final Serde&lt;Long&gt; longSerde = Serdes.Long();
// Construct a `KStream` from the input topic "streams-plaintext-input", where message values
// represent lines of text (for the sake of this example, we ignore whatever may be stored
// in the message keys).
KStream&lt;String, String&gt; textLines = builder.stream("streams-plaintext-input",
Consumed.with(stringSerde, stringSerde);
KTable&lt;String, Long&gt; wordCounts = textLines
// Split each text line, by whitespace, into words.
.flatMapValues(value -> Arrays.asList(value.toLowerCase().split("\\W+")))
// Group the text words as message keys
.groupBy((key, value) -> value)
// Count the occurrences of each word (message key).
.count()
// Store the running counts as a changelog stream to the output topic.
wordCounts.toStream().to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long()));
</pre>
<p>
It implements the WordCount
algorithm, which computes a word occurrence histogram from the input text. However, unlike other WordCount examples
you might have seen before that operate on bounded data, the WordCount demo application behaves slightly differently because it is
designed to operate on an <b>infinite, unbounded stream</b> of data. Similar to the bounded variant, it is a stateful algorithm that
tracks and updates the counts of words. However, since it must assume potentially
unbounded input data, it will periodically output its current state and results while continuing to process more data
because it cannot know when it has processed "all" the input data.
</p>
<p>
As the first step, we will start Kafka (unless you already have it started) and then we will
prepare input data to a Kafka topic, which will subsequently be processed by a Kafka Streams application.
</p>
<h4><a id="quickstart_streams_download" href="#quickstart_streams_download">Step 1: Download the code</a></h4>
<a href="https://www.apache.org/dyn/closer.cgi?path=/kafka/{{fullDotVersion}}/kafka_{{scalaVersion}}-{{fullDotVersion}}.tgz" title="Kafka downloads">Download</a> the {{fullDotVersion}} release and un-tar it.
Note that there are multiple downloadable Scala versions and we choose to use the recommended version ({{scalaVersion}}) here:
<pre class="brush: bash;">
&gt; tar -xzf kafka_{{scalaVersion}}-{{fullDotVersion}}.tgz
&gt; cd kafka_{{scalaVersion}}-{{fullDotVersion}}
</pre>
<h4><a id="quickstart_streams_startserver" href="#quickstart_streams_startserver">Step 2: Start the Kafka server</a></h4>
<p>
Kafka uses <a href="https://zookeeper.apache.org/">ZooKeeper</a> so you need to first start a ZooKeeper server if you don't already have one. You can use the convenience script packaged with kafka to get a quick-and-dirty single-node ZooKeeper instance.
</p>
<pre class="brush: bash;">
&gt; bin/zookeeper-server-start.sh config/zookeeper.properties
[2013-04-22 15:01:37,495] INFO Reading configuration from: config/zookeeper.properties (org.apache.zookeeper.server.quorum.QuorumPeerConfig)
...
</pre>
<p>Now start the Kafka server:</p>
<pre class="brush: bash;">
&gt; bin/kafka-server-start.sh config/server.properties
[2013-04-22 15:01:47,028] INFO Verifying properties (kafka.utils.VerifiableProperties)
[2013-04-22 15:01:47,051] INFO Property socket.send.buffer.bytes is overridden to 1048576 (kafka.utils.VerifiableProperties)
...
</pre>
<h4><a id="quickstart_streams_prepare" href="#quickstart_streams_prepare">Step 3: Prepare input topic and start Kafka producer</a></h4>
<!--
<pre class="brush: bash;">
&gt; echo -e "all streams lead to kafka\nhello kafka streams\njoin kafka summit" > file-input.txt
</pre>
Or on Windows:
<pre class="brush: bash;">
&gt; echo all streams lead to kafka> file-input.txt
&gt; echo hello kafka streams>> file-input.txt
&gt; echo|set /p=join kafka summit>> file-input.txt
</pre>
-->
Next, we create the input topic named <b>streams-plaintext-input</b> and the output topic named <b>streams-wordcount-output</b>:
<pre class="brush: bash;">
&gt; bin/kafka-topics.sh --create \
--zookeeper localhost:2181 \
--replication-factor 1 \
--partitions 1 \
--topic streams-plaintext-input
Created topic "streams-plaintext-input".
</pre>
Note: we create the output topic with compaction enabled because the output stream is a changelog stream
(cf. <a href="#anchor-changelog-output">explanation of application output</a> below).
<pre class="brush: bash;">
&gt; bin/kafka-topics.sh --create \
--zookeeper localhost:2181 \
--replication-factor 1 \
--partitions 1 \
--topic streams-wordcount-output \
--config cleanup.policy=compact
Created topic "streams-wordcount-output".
</pre>
The created topic can be described with the same <b>kafka-topics</b> tool:
<pre class="brush: bash;">
&gt; bin/kafka-topics.sh --zookeeper localhost:2181 --describe
Topic:streams-plaintext-input PartitionCount:1 ReplicationFactor:1 Configs:
Topic: streams-plaintext-input Partition: 0 Leader: 0 Replicas: 0 Isr: 0
Topic:streams-wordcount-output PartitionCount:1 ReplicationFactor:1 Configs:
Topic: streams-wordcount-output Partition: 0 Leader: 0 Replicas: 0 Isr: 0
</pre>
<h4><a id="quickstart_streams_start" href="#quickstart_streams_start">Step 4: Start the Wordcount Application</a></h4>
The following command starts the WordCount demo application:
<pre class="brush: bash;">
&gt; bin/kafka-run-class.sh org.apache.kafka.streams.examples.wordcount.WordCountDemo
</pre>
<p>
The demo application will read from the input topic <b>streams-plaintext-input</b>, perform the computations of the WordCount algorithm on each of the read messages,
and continuously write its current results to the output topic <b>streams-wordcount-output</b>.
Hence there won't be any STDOUT output except log entries as the results are written back into in Kafka.
</p>
Now we can start the console producer in a separate terminal to write some input data to this topic:
<pre class="brush: bash;">
&gt; bin/kafka-console-producer.sh --broker-list localhost:9092 --topic streams-plaintext-input
</pre>
and inspect the output of the WordCount demo application by reading from its output topic with the console consumer in a separate terminal:
<pre class="brush: bash;">
&gt; bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 \
--topic streams-wordcount-output \
--from-beginning \
--formatter kafka.tools.DefaultMessageFormatter \
--property print.key=true \
--property print.value=true \
--property key.deserializer=org.apache.kafka.common.serialization.StringDeserializer \
--property value.deserializer=org.apache.kafka.common.serialization.LongDeserializer
</pre>
<h4><a id="quickstart_streams_process" href="#quickstart_streams_process">Step 5: Process some data</a></h4>
Now let's write some message with the console producer into the input topic <b>streams-plaintext-input</b> by entering a single line of text and then hit &lt;RETURN&gt;.
This will send a new message to the input topic, where the message key is null and the message value is the string encoded text line that you just entered
(in practice, input data for applications will typically be streaming continuously into Kafka, rather than being manually entered as we do in this quickstart):
<pre class="brush: bash;">
&gt; bin/kafka-console-producer.sh --broker-list localhost:9092 --topic streams-plaintext-input
all streams lead to kafka
</pre>
<p>
This message will be processed by the Wordcount application and the following output data will be written to the <b>streams-wordcount-output</b> topic and printed by the console consumer:
</p>
<pre class="brush: bash;">
&gt; bin/kafka-console-consumer.sh --bootstrap-server localhost:9092
--topic streams-wordcount-output \
--from-beginning \
--formatter kafka.tools.DefaultMessageFormatter \
--property print.key=true \
--property print.value=true \
--property key.deserializer=org.apache.kafka.common.serialization.StringDeserializer \
--property value.deserializer=org.apache.kafka.common.serialization.LongDeserializer
all 1
streams 1
lead 1
to 1
kafka 1
</pre>
<p>
Here, the first column is the Kafka message key in <code>java.lang.String</code> format and represents a word that is being counted, and the second column is the message value in <code>java.lang.Long</code>format, representing the word's latest count.
</p>
Now let's continue writing one more message with the console producer into the input topic <b>streams-plaintext-input</b>.
Enter the text line "hello kafka streams" and hit &lt;RETURN&gt;.
Your terminal should look as follows:
<pre class="brush: bash;">
&gt; bin/kafka-console-producer.sh --broker-list localhost:9092 --topic streams-plaintext-input
all streams lead to kafka
hello kafka streams
</pre>
In your other terminal in which the console consumer is running, you will observe that the WordCount application wrote new output data:
<pre class="brush: bash;">
&gt; bin/kafka-console-consumer.sh --bootstrap-server localhost:9092
--topic streams-wordcount-output \
--from-beginning \
--formatter kafka.tools.DefaultMessageFormatter \
--property print.key=true \
--property print.value=true \
--property key.deserializer=org.apache.kafka.common.serialization.StringDeserializer \
--property value.deserializer=org.apache.kafka.common.serialization.LongDeserializer
all 1
streams 1
lead 1
to 1
kafka 1
hello 1
kafka 2
streams 2
</pre>
Here the last printed lines <b>kafka 2</b> and <b>streams 2</b> indicate updates to the keys <b>kafka</b> and <b>streams</b> whose counts have been incremented from <b>1</b> to <b>2</b>.
Whenever you write further input messages to the input topic, you will observe new messages being added to the <b>streams-wordcount-output</b> topic,
representing the most recent word counts as computed by the WordCount application.
Let's enter one final input text line "join kafka summit" and hit &lt;RETURN&gt; in the console producer to the input topic <b>streams-wordcount-input</b> before we wrap up this quickstart:
<pre class="brush: bash;">
&gt; bin/kafka-console-producer.sh --broker-list localhost:9092 --topic streams-wordcount-input
all streams lead to kafka
hello kafka streams
join kafka summit
</pre>
<a name="anchor-changelog-output"></a>
The <b>streams-wordcount-output</b> topic will subsequently show the corresponding updated word counts (see last three lines):
<pre class="brush: bash;">
&gt; bin/kafka-console-consumer.sh --bootstrap-server localhost:9092
--topic streams-wordcount-output \
--from-beginning \
--formatter kafka.tools.DefaultMessageFormatter \
--property print.key=true \
--property print.value=true \
--property key.deserializer=org.apache.kafka.common.serialization.StringDeserializer \
--property value.deserializer=org.apache.kafka.common.serialization.LongDeserializer
all 1
streams 1
lead 1
to 1
kafka 1
hello 1
kafka 2
streams 2
join 1
kafka 3
summit 1
</pre>
As one can see, outputs of the Wordcount application is actually a continuous stream of updates, where each output record (i.e. each line in the original output above) is
an updated count of a single word, aka record key such as "kafka". For multiple records with the same key, each later record is an update of the previous one.
<p>
The two diagrams below illustrate what is essentially happening behind the scenes.
The first column shows the evolution of the current state of the <code>KTable&lt;String, Long&gt;</code> that is counting word occurrences for <code>count</code>.
The second column shows the change records that result from state updates to the KTable and that are being sent to the output Kafka topic <b>streams-wordcount-output</b>.
</p>
<img src="/{{version}}/images/streams-table-updates-02.png" style="float: right; width: 25%;">
<img src="/{{version}}/images/streams-table-updates-01.png" style="float: right; width: 25%;">
<p>
First the text line "all streams lead to kafka" is being processed.
The <code>KTable</code> is being built up as each new word results in a new table entry (highlighted with a green background), and a corresponding change record is sent to the downstream <code>KStream</code>.
</p>
<p>
When the second text line "hello kafka streams" is processed, we observe, for the first time, that existing entries in the <code>KTable</code> are being updated (here: for the words "kafka" and for "streams"). And again, change records are being sent to the output topic.
</p>
<p>
And so on (we skip the illustration of how the third line is being processed). This explains why the output topic has the contents we showed above, because it contains the full record of changes.
</p>
<p>
Looking beyond the scope of this concrete example, what Kafka Streams is doing here is to leverage the duality between a table and a changelog stream (here: table = the KTable, changelog stream = the downstream KStream): you can publish every change of the table to a stream, and if you consume the entire changelog stream from beginning to end, you can reconstruct the contents of the table.
</p>
<h4><a id="quickstart_streams_stop" href="#quickstart_streams_stop">Step 6: Teardown the application</a></h4>
<p>You can now stop the console consumer, the console producer, the Wordcount application, the Kafka broker and the ZooKeeper server in order via <b>Ctrl-C</b>.</p>
<div class="pagination">
<a href="/{{version}}/documentation/streams" class="pagination__btn pagination__btn__prev">Previous</a>
<a href="/{{version}}/documentation/streams/tutorial" class="pagination__btn pagination__btn__next">Next</a>
</div>
</script>
<div class="p-quickstart-streams"></div>
<!--#include virtual="../../includes/_header.htm" -->
<!--#include virtual="../../includes/_top.htm" -->
<div class="content documentation documentation--current">
<!--#include virtual="../../includes/_nav.htm" -->
<div class="right">
<!--#include virtual="../../includes/_docs_banner.htm" -->
<ul class="breadcrumbs">
<li><a href="/documentation">Documentation</a></li>
<li><a href="/documentation/streams">Streams</a></li>
</ul>
<div class="p-content"></div>
</div>
</div>
<!--#include virtual="../../includes/_footer.htm" -->
<script>
$(function() {
// Show selected style on nav item
$('.b-nav__streams').addClass('selected');
// Display docs subnav items
$('.b-nav__docs').parent().toggleClass('nav__item__with__subs--expanded');
});
</script>