## # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## # This file contains some of the configurations for the Kafka Connect distributed worker. This file is intended # to be used with the examples, and some settings may differ from those used in a production system, especially # the `bootstrap.servers` and those specifying replication factors. # A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. bootstrap.servers=localhost:9092 # unique name for the cluster, used in forming the Connect cluster group. Note that this must not conflict with consumer group IDs group.id=connect-cluster # The converters specify the format of data in Kafka and how to translate it into Connect data. Every Connect user will # need to configure these based on the format they want their data in when loaded from or stored into Kafka key.converter=org.apache.kafka.connect.json.JsonConverter value.converter=org.apache.kafka.connect.json.JsonConverter # Converter-specific settings can be passed in by prefixing the Converter's setting with the converter we want to apply # it to key.converter.schemas.enable=true value.converter.schemas.enable=true # Topic to use for storing offsets. This topic should have many partitions and be replicated and compacted. # Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create # the topic before starting Kafka Connect if a specific topic configuration is needed. # Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value. # Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able # to run this example on a single-broker cluster and so here we instead set the replication factor to 1. offset.storage.topic=connect-offsets offset.storage.replication.factor=1 #offset.storage.partitions=25 # Topic to use for storing connector and task configurations; note that this should be a single partition, highly replicated, # and compacted topic. Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create # the topic before starting Kafka Connect if a specific topic configuration is needed. # Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value. # Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able # to run this example on a single-broker cluster and so here we instead set the replication factor to 1. config.storage.topic=connect-configs config.storage.replication.factor=1 # Topic to use for storing statuses. This topic can have multiple partitions and should be replicated and compacted. # Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create # the topic before starting Kafka Connect if a specific topic configuration is needed. # Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value. # Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able # to run this example on a single-broker cluster and so here we instead set the replication factor to 1. status.storage.topic=connect-status status.storage.replication.factor=1 #status.storage.partitions=5 # Flush much faster than normal, which is useful for testing/debugging offset.flush.interval.ms=10000 # List of comma-separated URIs the REST API will listen on. The supported protocols are HTTP and HTTPS. # Specify hostname as 0.0.0.0 to bind to all interfaces. # Leave hostname empty to bind to default interface. # Examples of legal listener lists: HTTP://myhost:8083,HTTPS://myhost:8084" #listeners=HTTP://:8083 # The Hostname & Port that will be given out to other workers to connect to i.e. URLs that are routable from other servers. # If not set, it uses the value for "listeners" if configured. #rest.advertised.host.name= #rest.advertised.port= #rest.advertised.listener= # Set to a list of filesystem paths separated by commas (,) to enable class loading isolation for plugins # (connectors, converters, transformations). The list should consist of top level directories that include # any combination of: # a) directories immediately containing jars with plugins and their dependencies # b) uber-jars with plugins and their dependencies # c) directories immediately containing the package directory structure of classes of plugins and their dependencies # Examples: # plugin.path=/usr/local/share/java,/usr/local/share/kafka/plugins,/opt/connectors, #plugin.path=