You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
667 lines
31 KiB
667 lines
31 KiB
<!-- |
|
Licensed to the Apache Software Foundation (ASF) under one or more |
|
contributor license agreements. See the NOTICE file distributed with |
|
this work for additional information regarding copyright ownership. |
|
The ASF licenses this file to You under the Apache License, Version 2.0 |
|
(the "License"); you may not use this file except in compliance with |
|
the License. You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
See the License for the specific language governing permissions and |
|
limitations under the License. |
|
--> |
|
<script><!--#include virtual="../js/templateData.js" --></script> |
|
|
|
<script id="content-template" type="text/x-handlebars-template"> |
|
<h1>Tutorial: Write a Kafka Streams Application</h1> |
|
<div class="sub-nav-sticky"> |
|
<div class="sticky-top"> |
|
<div style="height:35px"> |
|
<a href="/{{version}}/documentation/streams/">Introduction</a> |
|
<a href="/{{version}}/documentation/streams/quickstart">Run Demo App</a> |
|
<a class="active-menu-item" href="/{{version}}/documentation/streams/tutorial">Tutorial: Write App</a> |
|
<a href="/{{version}}/documentation/streams/core-concepts">Concepts</a> |
|
<a href="/{{version}}/documentation/streams/architecture">Architecture</a> |
|
<a href="/{{version}}/documentation/streams/developer-guide/">Developer Guide</a> |
|
<a href="/{{version}}/documentation/streams/upgrade-guide">Upgrade</a> |
|
</div> |
|
</div> |
|
</div> |
|
<p> |
|
In this guide we will start from scratch on setting up your own project to write a stream processing application using Kafka Streams. |
|
It is highly recommended to read the <a href="/{{version}}/documentation/streams/quickstart">quickstart</a> first on how to run a Streams application written in Kafka Streams if you have not done so. |
|
</p> |
|
|
|
<h4><a id="tutorial_maven_setup" href="#tutorial_maven_setup">Setting up a Maven Project</a></h4> |
|
|
|
<p> |
|
We are going to use a Kafka Streams Maven Archetype for creating a Streams project structure with the following commands: |
|
</p> |
|
|
|
<pre class="brush: bash;"> |
|
mvn archetype:generate \ |
|
-DarchetypeGroupId=org.apache.kafka \ |
|
-DarchetypeArtifactId=streams-quickstart-java \ |
|
-DarchetypeVersion={{fullDotVersion}} \ |
|
-DgroupId=streams.examples \ |
|
-DartifactId=streams.examples \ |
|
-Dversion=0.1 \ |
|
-Dpackage=myapps |
|
</pre> |
|
|
|
<p> |
|
You can use a different value for <code>groupId</code>, <code>artifactId</code> and <code>package</code> parameters if you like. |
|
Assuming the above parameter values are used, this command will create a project structure that looks like this: |
|
</p> |
|
|
|
<pre class="brush: bash;"> |
|
> tree streams.examples |
|
streams-quickstart |
|
|-- pom.xml |
|
|-- src |
|
|-- main |
|
|-- java |
|
| |-- myapps |
|
| |-- LineSplit.java |
|
| |-- Pipe.java |
|
| |-- WordCount.java |
|
|-- resources |
|
|-- log4j.properties |
|
</pre> |
|
|
|
<p> |
|
The <code>pom.xml</code> file included in the project already has the Streams dependency defined. |
|
Note, that the generated <code>pom.xml</code> targets Java 8, and does not work with higher Java versions. |
|
</p> |
|
|
|
<p> |
|
There are already several example programs written with Streams library under <code>src/main/java</code>. |
|
Since we are going to start writing such programs from scratch, we can now delete these examples: |
|
</p> |
|
|
|
<pre class="brush: bash;"> |
|
> cd streams-quickstart |
|
> rm src/main/java/myapps/*.java |
|
</pre> |
|
|
|
<h4><a id="tutorial_code_pipe" href="#tutorial_code_pipe">Writing a first Streams application: Pipe</a></h4> |
|
|
|
It's coding time now! Feel free to open your favorite IDE and import this Maven project, or simply open a text editor and create a java file under <code>src/main/java/myapps</code>. |
|
Let's name it <code>Pipe.java</code>: |
|
|
|
<pre class="brush: java;"> |
|
package myapps; |
|
|
|
public class Pipe { |
|
|
|
public static void main(String[] args) throws Exception { |
|
|
|
} |
|
} |
|
</pre> |
|
|
|
<p> |
|
We are going to fill in the <code>main</code> function to write this pipe program. Note that we will not list the import statements as we go since IDEs can usually add them automatically. |
|
However if you are using a text editor you need to manually add the imports, and at the end of this section we'll show the complete code snippet with import statement for you. |
|
</p> |
|
|
|
<p> |
|
The first step to write a Streams application is to create a <code>java.util.Properties</code> map to specify different Streams execution configuration values as defined in <code>StreamsConfig</code>. |
|
A couple of important configuration values you need to set are: <code>StreamsConfig.BOOTSTRAP_SERVERS_CONFIG</code>, which specifies a list of host/port pairs to use for establishing the initial connection to the Kafka cluster, |
|
and <code>StreamsConfig.APPLICATION_ID_CONFIG</code>, which gives the unique identifier of your Streams application to distinguish itself with other applications talking to the same Kafka cluster: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
Properties props = new Properties(); |
|
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-pipe"); |
|
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); // assuming that the Kafka broker this application is talking to runs on local machine with port 9092 |
|
</pre> |
|
|
|
<p> |
|
In addition, you can customize other configurations in the same map, for example, default serialization and deserialization libraries for the record key-value pairs: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass()); |
|
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass()); |
|
</pre> |
|
|
|
<p> |
|
For a full list of configurations of Kafka Streams please refer to this <a href="/{{version}}/documentation/#streamsconfigs">table</a>. |
|
</p> |
|
|
|
<p> |
|
Next we will define the computational logic of our Streams application. |
|
In Kafka Streams this computational logic is defined as a <code>topology</code> of connected processor nodes. |
|
We can use a topology builder to construct such a topology, |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
final StreamsBuilder builder = new StreamsBuilder(); |
|
</pre> |
|
|
|
<p> |
|
And then create a source stream from a Kafka topic named <code>streams-plaintext-input</code> using this topology builder: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
KStream<String, String> source = builder.stream("streams-plaintext-input"); |
|
</pre> |
|
|
|
<p> |
|
Now we get a <code>KStream</code> that is continuously generating records from its source Kafka topic <code>streams-plaintext-input</code>. |
|
The records are organized as <code>String</code> typed key-value pairs. |
|
The simplest thing we can do with this stream is to write it into another Kafka topic, say it's named <code>streams-pipe-output</code>: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
source.to("streams-pipe-output"); |
|
</pre> |
|
|
|
<p> |
|
Note that we can also concatenate the above two lines into a single line as: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
builder.stream("streams-plaintext-input").to("streams-pipe-output"); |
|
</pre> |
|
|
|
<p> |
|
We can inspect what kind of <code>topology</code> is created from this builder by doing the following: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
final Topology topology = builder.build(); |
|
</pre> |
|
|
|
<p> |
|
And print its description to standard output as: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
System.out.println(topology.describe()); |
|
</pre> |
|
|
|
<p> |
|
If we just stop here, compile and run the program, it will output the following information: |
|
</p> |
|
|
|
<pre class="brush: bash;"> |
|
> mvn clean package |
|
> mvn exec:java -Dexec.mainClass=myapps.Pipe |
|
Sub-topologies: |
|
Sub-topology: 0 |
|
Source: KSTREAM-SOURCE-0000000000(topics: streams-plaintext-input) --> KSTREAM-SINK-0000000001 |
|
Sink: KSTREAM-SINK-0000000001(topic: streams-pipe-output) <-- KSTREAM-SOURCE-0000000000 |
|
Global Stores: |
|
none |
|
</pre> |
|
|
|
<p> |
|
As shown above, it illustrates that the constructed topology has two processor nodes, a source node <code>KSTREAM-SOURCE-0000000000</code> and a sink node <code>KSTREAM-SINK-0000000001</code>. |
|
<code>KSTREAM-SOURCE-0000000000</code> continuously read records from Kafka topic <code>streams-plaintext-input</code> and pipe them to its downstream node <code>KSTREAM-SINK-0000000001</code>; |
|
<code>KSTREAM-SINK-0000000001</code> will write each of its received record in order to another Kafka topic <code>streams-pipe-output</code> |
|
(the <code>--></code> and <code><--</code> arrows dictates the downstream and upstream processor nodes of this node, i.e. "children" and "parents" within the topology graph). |
|
It also illustrates that this simple topology has no global state stores associated with it (we will talk about state stores more in the following sections). |
|
</p> |
|
|
|
<p> |
|
Note that we can always describe the topology as we did above at any given point while we are building it in the code, so as a user you can interactively "try and taste" your computational logic defined in the topology until you are happy with it. |
|
Suppose we are already done with this simple topology that just pipes data from one Kafka topic to another in an endless streaming manner, |
|
we can now construct the Streams client with the two components we have just constructed above: the configuration map specified in a <code>java.util.Properties</code> instance and the <code>Topology</code> object. |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
final KafkaStreams streams = new KafkaStreams(topology, props); |
|
</pre> |
|
|
|
<p> |
|
By calling its <code>start()</code> function we can trigger the execution of this client. |
|
The execution won't stop until <code>close()</code> is called on this client. |
|
We can, for example, add a shutdown hook with a countdown latch to capture a user interrupt and close the client upon terminating this program: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
final CountDownLatch latch = new CountDownLatch(1); |
|
|
|
// attach shutdown handler to catch control-c |
|
Runtime.getRuntime().addShutdownHook(new Thread("streams-shutdown-hook") { |
|
@Override |
|
public void run() { |
|
streams.close(); |
|
latch.countDown(); |
|
} |
|
}); |
|
|
|
try { |
|
streams.start(); |
|
latch.await(); |
|
} catch (Throwable e) { |
|
System.exit(1); |
|
} |
|
System.exit(0); |
|
</pre> |
|
|
|
<p> |
|
The complete code so far looks like this: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
package myapps; |
|
|
|
import org.apache.kafka.common.serialization.Serdes; |
|
import org.apache.kafka.streams.KafkaStreams; |
|
import org.apache.kafka.streams.StreamsBuilder; |
|
import org.apache.kafka.streams.StreamsConfig; |
|
import org.apache.kafka.streams.Topology; |
|
|
|
import java.util.Properties; |
|
import java.util.concurrent.CountDownLatch; |
|
|
|
public class Pipe { |
|
|
|
public static void main(String[] args) throws Exception { |
|
Properties props = new Properties(); |
|
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-pipe"); |
|
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); |
|
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass()); |
|
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass()); |
|
|
|
final StreamsBuilder builder = new StreamsBuilder(); |
|
|
|
builder.stream("streams-plaintext-input").to("streams-pipe-output"); |
|
|
|
final Topology topology = builder.build(); |
|
|
|
final KafkaStreams streams = new KafkaStreams(topology, props); |
|
final CountDownLatch latch = new CountDownLatch(1); |
|
|
|
// attach shutdown handler to catch control-c |
|
Runtime.getRuntime().addShutdownHook(new Thread("streams-shutdown-hook") { |
|
@Override |
|
public void run() { |
|
streams.close(); |
|
latch.countDown(); |
|
} |
|
}); |
|
|
|
try { |
|
streams.start(); |
|
latch.await(); |
|
} catch (Throwable e) { |
|
System.exit(1); |
|
} |
|
System.exit(0); |
|
} |
|
} |
|
</pre> |
|
|
|
<p> |
|
If you already have the Kafka broker up and running at <code>localhost:9092</code>, |
|
and the topics <code>streams-plaintext-input</code> and <code>streams-pipe-output</code> created on that broker, |
|
you can run this code in your IDE or on the command line, using Maven: |
|
</p> |
|
|
|
<pre class="brush: brush;"> |
|
> mvn clean package |
|
> mvn exec:java -Dexec.mainClass=myapps.Pipe |
|
</pre> |
|
|
|
<p> |
|
For detailed instructions on how to run a Streams application and observe its computing results, |
|
please read the <a href="/{{version}}/documentation/streams/quickstart">Play with a Streams Application</a> section. |
|
We will not talk about this in the rest of this section. |
|
</p> |
|
|
|
<h4><a id="tutorial_code_linesplit" href="#tutorial_code_linesplit">Writing a second Streams application: Line Split</a></h4> |
|
|
|
<p> |
|
We have learned how to construct a Streams client with its two key components: the <code>StreamsConfig</code> and <code>Topology</code>. |
|
Now let's move on to add some real processing logic by augmenting the current topology. |
|
We can first create another program by first copy the existing <code>Pipe.java</code> class: |
|
</p> |
|
|
|
<pre class="brush: brush;"> |
|
> cp src/main/java/myapps/Pipe.java src/main/java/myapps/LineSplit.java |
|
</pre> |
|
|
|
<p> |
|
And change its class name as well as the application id config to distinguish with the original program: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
public class LineSplit { |
|
|
|
public static void main(String[] args) throws Exception { |
|
Properties props = new Properties(); |
|
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-linesplit"); |
|
// ... |
|
} |
|
} |
|
</pre> |
|
|
|
<p> |
|
Since each of the source stream's record is a <code>String</code> typed key-value pair, |
|
let's treat the value string as a text line and split it into words with a <code>FlatMapValues</code> operator: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
KStream<String, String> source = builder.stream("streams-plaintext-input"); |
|
KStream<String, String> words = source.flatMapValues(new ValueMapper<String, Iterable<String>>() { |
|
@Override |
|
public Iterable<String> apply(String value) { |
|
return Arrays.asList(value.split("\\W+")); |
|
} |
|
}); |
|
</pre> |
|
|
|
<p> |
|
The operator will take the <code>source</code> stream as its input, and generate a new stream named <code>words</code> |
|
by processing each record from its source stream in order and breaking its value string into a list of words, and producing |
|
each word as a new record to the output <code>words</code> stream. |
|
This is a stateless operator that does not need to keep track of any previously received records or processed results. |
|
Note if you are using JDK 8 you can use lambda expression and simplify the above code as: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
KStream<String, String> source = builder.stream("streams-plaintext-input"); |
|
KStream<String, String> words = source.flatMapValues(value -> Arrays.asList(value.split("\\W+"))); |
|
</pre> |
|
|
|
<p> |
|
And finally we can write the word stream back into another Kafka topic, say <code>streams-linesplit-output</code>. |
|
Again, these two steps can be concatenated as the following (assuming lambda expression is used): |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
KStream<String, String> source = builder.stream("streams-plaintext-input"); |
|
source.flatMapValues(value -> Arrays.asList(value.split("\\W+"))) |
|
.to("streams-linesplit-output"); |
|
</pre> |
|
|
|
<p> |
|
If we now describe this augmented topology as <code>System.out.println(topology.describe())</code>, we will get the following: |
|
</p> |
|
|
|
<pre class="brush: bash;"> |
|
> mvn clean package |
|
> mvn exec:java -Dexec.mainClass=myapps.LineSplit |
|
Sub-topologies: |
|
Sub-topology: 0 |
|
Source: KSTREAM-SOURCE-0000000000(topics: streams-plaintext-input) --> KSTREAM-FLATMAPVALUES-0000000001 |
|
Processor: KSTREAM-FLATMAPVALUES-0000000001(stores: []) --> KSTREAM-SINK-0000000002 <-- KSTREAM-SOURCE-0000000000 |
|
Sink: KSTREAM-SINK-0000000002(topic: streams-linesplit-output) <-- KSTREAM-FLATMAPVALUES-0000000001 |
|
Global Stores: |
|
none |
|
</pre> |
|
|
|
<p> |
|
As we can see above, a new processor node <code>KSTREAM-FLATMAPVALUES-0000000001</code> is injected into the topology between the original source and sink nodes. |
|
It takes the source node as its parent and the sink node as its child. |
|
In other words, each record fetched by the source node will first traverse to the newly added <code>KSTREAM-FLATMAPVALUES-0000000001</code> node to be processed, |
|
and one or more new records will be generated as a result. They will continue traverse down to the sink node to be written back to Kafka. |
|
Note this processor node is "stateless" as it is not associated with any stores (i.e. <code>(stores: [])</code>). |
|
</p> |
|
|
|
<p> |
|
The complete code looks like this (assuming lambda expression is used): |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
package myapps; |
|
|
|
import org.apache.kafka.common.serialization.Serdes; |
|
import org.apache.kafka.streams.KafkaStreams; |
|
import org.apache.kafka.streams.StreamsBuilder; |
|
import org.apache.kafka.streams.StreamsConfig; |
|
import org.apache.kafka.streams.Topology; |
|
import org.apache.kafka.streams.kstream.KStream; |
|
|
|
import java.util.Arrays; |
|
import java.util.Properties; |
|
import java.util.concurrent.CountDownLatch; |
|
|
|
public class LineSplit { |
|
|
|
public static void main(String[] args) throws Exception { |
|
Properties props = new Properties(); |
|
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-linesplit"); |
|
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); |
|
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass()); |
|
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass()); |
|
|
|
final StreamsBuilder builder = new StreamsBuilder(); |
|
|
|
KStream<String, String> source = builder.stream("streams-plaintext-input"); |
|
source.flatMapValues(value -> Arrays.asList(value.split("\\W+"))) |
|
.to("streams-linesplit-output"); |
|
|
|
final Topology topology = builder.build(); |
|
final KafkaStreams streams = new KafkaStreams(topology, props); |
|
final CountDownLatch latch = new CountDownLatch(1); |
|
|
|
// ... same as Pipe.java above |
|
} |
|
} |
|
</pre> |
|
|
|
<h4><a id="tutorial_code_wordcount" href="#tutorial_code_wordcount">Writing a third Streams application: Wordcount</a></h4> |
|
|
|
<p> |
|
Let's now take a step further to add some "stateful" computations to the topology by counting the occurrence of the words split from the source text stream. |
|
Following similar steps let's create another program based on the <code>LineSplit.java</code> class: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
public class WordCount { |
|
|
|
public static void main(String[] args) throws Exception { |
|
Properties props = new Properties(); |
|
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-wordcount"); |
|
// ... |
|
} |
|
} |
|
</pre> |
|
|
|
<p> |
|
In order to count the words we can first modify the <code>flatMapValues</code> operator to treat all of them as lower case (assuming lambda expression is used): |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
source.flatMapValues(new ValueMapper<String, Iterable<String>>() { |
|
@Override |
|
public Iterable<String> apply(String value) { |
|
return Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+")); |
|
} |
|
}); |
|
</pre> |
|
|
|
<p> |
|
In order to do the counting aggregation we have to first specify that we want to key the stream on the value string, i.e. the lower cased word, with a <code>groupBy</code> operator. |
|
This operator generate a new grouped stream, which can then be aggregated by a <code>count</code> operator, which generates a running count on each of the grouped keys: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
KTable<String, Long> counts = |
|
source.flatMapValues(new ValueMapper<String, Iterable<String>>() { |
|
@Override |
|
public Iterable<String> apply(String value) { |
|
return Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+")); |
|
} |
|
}) |
|
.groupBy(new KeyValueMapper<String, String, String>() { |
|
@Override |
|
public String apply(String key, String value) { |
|
return value; |
|
} |
|
}) |
|
// Materialize the result into a KeyValueStore named "counts-store". |
|
// The Materialized store is always of type <Bytes, byte[]> as this is the format of the inner most store. |
|
.count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>> as("counts-store")); |
|
</pre> |
|
|
|
<p> |
|
Note that the <code>count</code> operator has a <code>Materialized</code> parameter that specifies that the |
|
running count should be stored in a state store named <code>counts-store</code>. |
|
This <code>Counts</code> store can be queried in real-time, with details described in the <a href="/{{version}}/documentation/streams/developer-guide#streams_interactive_queries">Developer Manual</a>. |
|
</p> |
|
|
|
<p> |
|
We can also write the <code>counts</code> KTable's changelog stream back into another Kafka topic, say <code>streams-wordcount-output</code>. |
|
Because the result is a changelog stream, the output topic <code>streams-wordcount-output</code> should be configured with log compaction enabled. |
|
Note that this time the value type is no longer <code>String</code> but <code>Long</code>, so the default serialization classes are not viable for writing it to Kafka anymore. |
|
We need to provide overridden serialization methods for <code>Long</code> types, otherwise a runtime exception will be thrown: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
counts.toStream().to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long())); |
|
</pre> |
|
|
|
<p> |
|
Note that in order to read the changelog stream from topic <code>streams-wordcount-output</code>, |
|
one needs to set the value deserialization as <code>org.apache.kafka.common.serialization.LongDeserializer</code>. |
|
Details of this can be found in the <a href="/{{version}}/documentation/streams/quickstart">Play with a Streams Application</a> section. |
|
Assuming lambda expression from JDK 8 can be used, the above code can be simplified as: |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
KStream<String, String> source = builder.stream("streams-plaintext-input"); |
|
source.flatMapValues(value -> Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+"))) |
|
.groupBy((key, value) -> value) |
|
.count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>>as("counts-store")) |
|
.toStream() |
|
.to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long())); |
|
</pre> |
|
|
|
<p> |
|
If we again describe this augmented topology as <code>System.out.println(topology.describe())</code>, we will get the following: |
|
</p> |
|
|
|
<pre class="brush: bash;"> |
|
> mvn clean package |
|
> mvn exec:java -Dexec.mainClass=myapps.WordCount |
|
Sub-topologies: |
|
Sub-topology: 0 |
|
Source: KSTREAM-SOURCE-0000000000(topics: streams-plaintext-input) --> KSTREAM-FLATMAPVALUES-0000000001 |
|
Processor: KSTREAM-FLATMAPVALUES-0000000001(stores: []) --> KSTREAM-KEY-SELECT-0000000002 <-- KSTREAM-SOURCE-0000000000 |
|
Processor: KSTREAM-KEY-SELECT-0000000002(stores: []) --> KSTREAM-FILTER-0000000005 <-- KSTREAM-FLATMAPVALUES-0000000001 |
|
Processor: KSTREAM-FILTER-0000000005(stores: []) --> KSTREAM-SINK-0000000004 <-- KSTREAM-KEY-SELECT-0000000002 |
|
Sink: KSTREAM-SINK-0000000004(topic: Counts-repartition) <-- KSTREAM-FILTER-0000000005 |
|
Sub-topology: 1 |
|
Source: KSTREAM-SOURCE-0000000006(topics: Counts-repartition) --> KSTREAM-AGGREGATE-0000000003 |
|
Processor: KSTREAM-AGGREGATE-0000000003(stores: [Counts]) --> KTABLE-TOSTREAM-0000000007 <-- KSTREAM-SOURCE-0000000006 |
|
Processor: KTABLE-TOSTREAM-0000000007(stores: []) --> KSTREAM-SINK-0000000008 <-- KSTREAM-AGGREGATE-0000000003 |
|
Sink: KSTREAM-SINK-0000000008(topic: streams-wordcount-output) <-- KTABLE-TOSTREAM-0000000007 |
|
Global Stores: |
|
none |
|
</pre> |
|
|
|
<p> |
|
As we can see above, the topology now contains two disconnected sub-topologies. |
|
The first sub-topology's sink node <code>KSTREAM-SINK-0000000004</code> will write to a repartition topic <code>Counts-repartition</code>, |
|
which will be read by the second sub-topology's source node <code>KSTREAM-SOURCE-0000000006</code>. |
|
The repartition topic is used to "shuffle" the source stream by its aggregation key, which is in this case the value string. |
|
In addition, inside the first sub-topology a stateless <code>KSTREAM-FILTER-0000000005</code> node is injected between the grouping <code>KSTREAM-KEY-SELECT-0000000002</code> node and the sink node to filter out any intermediate record whose aggregate key is empty. |
|
</p> |
|
<p> |
|
In the second sub-topology, the aggregation node <code>KSTREAM-AGGREGATE-0000000003</code> is associated with a state store named <code>Counts</code> (the name is specified by the user in the <code>count</code> operator). |
|
Upon receiving each record from its upcoming stream source node, the aggregation processor will first query its associated <code>Counts</code> store to get the current count for that key, augment by one, and then write the new count back to the store. |
|
Each updated count for the key will also be piped downstream to the <code>KTABLE-TOSTREAM-0000000007</code> node, which interpret this update stream as a record stream before further piping to the sink node <code>KSTREAM-SINK-0000000008</code> for writing back to Kafka. |
|
</p> |
|
|
|
<p> |
|
The complete code looks like this (assuming lambda expression is used): |
|
</p> |
|
|
|
<pre class="brush: java;"> |
|
package myapps; |
|
|
|
import org.apache.kafka.common.serialization.Serdes; |
|
import org.apache.kafka.streams.KafkaStreams; |
|
import org.apache.kafka.streams.StreamsBuilder; |
|
import org.apache.kafka.streams.StreamsConfig; |
|
import org.apache.kafka.streams.Topology; |
|
import org.apache.kafka.streams.kstream.KStream; |
|
|
|
import java.util.Arrays; |
|
import java.util.Locale; |
|
import java.util.Properties; |
|
import java.util.concurrent.CountDownLatch; |
|
|
|
public class WordCount { |
|
|
|
public static void main(String[] args) throws Exception { |
|
Properties props = new Properties(); |
|
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-wordcount"); |
|
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); |
|
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass()); |
|
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass()); |
|
|
|
final StreamsBuilder builder = new StreamsBuilder(); |
|
|
|
KStream<String, String> source = builder.stream("streams-plaintext-input"); |
|
source.flatMapValues(value -> Arrays.asList(value.toLowerCase(Locale.getDefault()).split("\\W+"))) |
|
.groupBy((key, value) -> value) |
|
.count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>>as("counts-store")) |
|
.toStream() |
|
.to("streams-wordcount-output", Produced.with(Serdes.String(), Serdes.Long())); |
|
|
|
final Topology topology = builder.build(); |
|
final KafkaStreams streams = new KafkaStreams(topology, props); |
|
final CountDownLatch latch = new CountDownLatch(1); |
|
|
|
// ... same as Pipe.java above |
|
} |
|
} |
|
</pre> |
|
|
|
<div class="pagination"> |
|
<a href="/{{version}}/documentation/streams/quickstart" class="pagination__btn pagination__btn__prev">Previous</a> |
|
<a href="/{{version}}/documentation/streams/core-concepts" class="pagination__btn pagination__btn__next">Next</a> |
|
</div> |
|
</script> |
|
|
|
<div class="p-quickstart-streams"></div> |
|
|
|
<!--#include virtual="../../includes/_header.htm" --> |
|
<!--#include virtual="../../includes/_top.htm" --> |
|
<div class="content documentation documentation--current"> |
|
<!--#include virtual="../../includes/_nav.htm" --> |
|
<div class="right"> |
|
<!--#include virtual="../../includes/_docs_banner.htm" --> |
|
<ul class="breadcrumbs"> |
|
<li><a href="/documentation">Documentation</a></li> |
|
<li><a href="/documentation/streams">Kafka Streams</a></li> |
|
</ul> |
|
<div class="p-content"></div> |
|
</div> |
|
</div> |
|
<!--#include virtual="../../includes/_footer.htm" --> |
|
<script> |
|
$(function() { |
|
// Show selected style on nav item |
|
$('.b-nav__streams').addClass('selected'); |
|
|
|
//sticky secondary nav |
|
var $navbar = $(".sub-nav-sticky"), |
|
y_pos = $navbar.offset().top, |
|
height = $navbar.height(); |
|
|
|
$(window).scroll(function() { |
|
var scrollTop = $(window).scrollTop(); |
|
|
|
if (scrollTop > y_pos - height) { |
|
$navbar.addClass("navbar-fixed") |
|
} else if (scrollTop <= y_pos) { |
|
$navbar.removeClass("navbar-fixed") |
|
} |
|
}); |
|
|
|
// Display docs subnav items |
|
$('.b-nav__docs').parent().toggleClass('nav__item__with__subs--expanded'); |
|
}); |
|
</script>
|
|
|