2 changed files with 629 additions and 7 deletions
@ -0,0 +1,628 @@
@@ -0,0 +1,628 @@
|
||||
[[rsocket]] |
||||
= RSocket |
||||
|
||||
|
||||
|
||||
|
||||
[[rsocket-overview]] |
||||
== Overview |
||||
|
||||
RSocket is an application protocol for multiplexed, duplex communication over TCP, |
||||
WebSocket, and other byte stream transports, using one of the following interaction |
||||
models: |
||||
|
||||
* `Request-Response` -- send one message and receive one back. |
||||
* `Request-Stream` -- send one message and receive a stream of messages back. |
||||
* `Channel` -- send streams of messages in both directions. |
||||
* `Fire-and-Forget` -- send a one-way message. |
||||
|
||||
Once the initial connection is made, the "client" vs "server" distinction is lost as |
||||
both sides become symmetrical and each side can initiate one of the above interactions. |
||||
This is why in the protocol calls the participating sides "requester" and "responder" |
||||
while the above interactions are called "requests" or "streams". |
||||
|
||||
Below are key features built into the protocol: |
||||
|
||||
* https://www.reactive-streams.org/[Reactive Streams] semantics across network boundary -- |
||||
for streaming requests such as `Request-Stream` and `Channel`, back pressure signals |
||||
travel between requester and responder, allowing a requester to slow down a responder at |
||||
the source, hence reducing reliance on network layer congestion control, and the need |
||||
for buffering at the network or any level. |
||||
* Request throttling -- this feature is named "leasing" after the `LEASE` frame that |
||||
can be sent from each end to limit the total number of requests allowed by other end |
||||
for a given time. Leases are renewed periodically. |
||||
* Session resumption -- this is designed for loss of connectivity and requires some state |
||||
to be maintained. The state management is transparent for applications, and works well |
||||
in combination with back pressure which can stop a producer when possible and reduce |
||||
the amount of state required. |
||||
* Fragmentation and re-assembly of large messages. |
||||
* Keepalive (heartbeats). |
||||
|
||||
RSocket has https://github.com/rsocket[implementations] in multiple languages. The |
||||
https://github.com/rsocket/rsocket-java[Java library] is built on |
||||
https://projectreactor.io/[Project Reactor], and Reactor Netty for the transport. |
||||
That means signals from Reactive Streams Publishers in your application propagate |
||||
transparently through RSocket across the network. |
||||
|
||||
|
||||
|
||||
[[rsocket-protocol]] |
||||
=== The Protocol |
||||
|
||||
One of the benefits of RSocket is that it has a well defined behavior on the wire and an |
||||
easy to read http://rsocket.io/docs/Protocol[specification] along with some protocol |
||||
https://github.com/rsocket/rsocket/tree/master/Extensions[extensions]. Therefore it is |
||||
a good idea to read the spec, independent of language implementations and higher level |
||||
framework APIs. This section provides a succinct overview to establish some context. |
||||
|
||||
**Connecting** |
||||
|
||||
Initially a client connects to a server via some low level streaming transport such |
||||
as TCP or WebSocket and sends a `SETUP` frame to the server to define parameters for the |
||||
connection. |
||||
|
||||
The server may reject the `SETUP` frame, but generally after it is sent (for the client) |
||||
and received (for the server), both sides can begin to make requests, unless `SETUP` |
||||
indicates use of leasing semantics to limit the number of requests, in which case |
||||
both sides must wait for a `LEASE` frame from the other end to permit making requests. |
||||
|
||||
**Making Requests** |
||||
|
||||
Once a connection is established, both sides may initiate a request through one of the |
||||
frames `REQUEST_RESPONSE`, `REQUEST_STREAM`, `REQUEST_CHANNEL`, or `REQUEST_FNF`. Each of |
||||
those frames carries one message from the requester to the responder. |
||||
|
||||
The responder may then return `PAYLOAD` frames with response messages, and in the case |
||||
of `REQUEST_CHANNEL` the requester may also send `PAYLOAD` frames with more request |
||||
messages. |
||||
|
||||
When a request involves a stream of messages such as as `Request-Stream` and `Channel`, |
||||
the responder must respect demand signals from the requester. Demand is expressed as a |
||||
number of messages. Initial demand is specified in `REQUEST_STREAM` and |
||||
`REQUEST_CHANNEL` frames. Subsequent demand is signaled via `REQUEST_N` frames. |
||||
|
||||
Each side may also send metadata notifications, via the `METADATA_PUSH` frame, that do not |
||||
pertain to any individual request but rather to the connection as a whole. |
||||
|
||||
**Message Format** |
||||
|
||||
RSocket messages contain data and metadata. Metadata can be used to send a route, a |
||||
security token, etc. Data and metadata can be formatted differently. Mime types for each |
||||
are declared in the `SETUP` frame and apply to all requests on a given connection. |
||||
|
||||
While all messages can have metadata, typically metadata such as a route are per-request |
||||
and therefore only included in the first message on a request, i.e. with one of the frames |
||||
`REQUEST_RESPONSE`, `REQUEST_STREAM`, `REQUEST_CHANNEL`, or `REQUEST_FNF`. |
||||
|
||||
Protocol extensions define common metadata formats for use in applications: |
||||
|
||||
* https://github.com/rsocket/rsocket/blob/master/Extensions/CompositeMetadata.md[Composite Metadata] |
||||
-- multiple, independently formatted metadata entries. |
||||
* https://github.com/rsocket/rsocket/blob/master/Routing.md[Routing] -- the route for a |
||||
request. |
||||
|
||||
|
||||
|
||||
[[rsocket-java]] |
||||
=== Java Implementation |
||||
|
||||
The https://github.com/rsocket/rsocket-java[Java implementation] for RSocket is built on |
||||
https://projectreactor.io/[Project Reactor]. The transports for TCP and WebSocket are |
||||
built on https://github.com/reactor/reactor-netty[Reactor Netty]. As a Reactive Streams |
||||
library, Reactor simplifies the job of implementing the protocol. For applications it is |
||||
a natural fit to use `Flux` and `Mono` with declarative operators and transparent back |
||||
pressure support. |
||||
|
||||
The API in RSocket Java is intentionally minimal and basic. It focuses on protocol |
||||
features and leaves the application programming model (e.g. RPC codegen vs other) as a |
||||
higher level, independent concern. |
||||
|
||||
The main contract |
||||
https://github.com/rsocket/rsocket-java/blob/master/rsocket-core/src/main/java/io/rsocket/RSocket.java[io.rsocket.RSocket] |
||||
models the four request interaction types with `Mono` representing a promise for a |
||||
single message, `Flux` a stream of messages, and `io.rsocket.Payload` the actual |
||||
message with access to data and metadata as byte buffers. The `RSocket` contract is used |
||||
symmetrically. For requesting, the application is given an `RSocket` to perform |
||||
requests with. For responding, the application implements `RSocket` to handle requests. |
||||
|
||||
This is not meant to be a thorough introduction. For the most part, Spring applications |
||||
will not have to use its API directly. However it may be important to see or experiment |
||||
with RSocket independent of Spring. The RSocket Java repository contains a number of |
||||
https://github.com/rsocket/rsocket-java/tree/develop/rsocket-examples[sample apps] that |
||||
demonstrate its API and protocol features. |
||||
|
||||
|
||||
|
||||
[[rsocket-spring]] |
||||
=== Spring Support |
||||
|
||||
The `spring-messaging` module contains the following: |
||||
|
||||
* <<rsocket-requester>> -- fluent API to make requests through an `io.rsocket.RSocket` |
||||
with data and metadata encoding/decoding. |
||||
* <<rsocket-annot-responders>> -- `@MessageMapping` annotated handler methods for responding. |
||||
|
||||
The `spring-web` module contains `Encoder` and `Decoder` implementations such as Jackson |
||||
CBOR/JSON, and Protobuf that RSocket applications will likely need. It also contains the |
||||
`PathPatternParser` that can be plugged in for efficient route matching. |
||||
|
||||
Spring Security... |
||||
|
||||
Spring Boot... |
||||
|
||||
|
||||
|
||||
|
||||
[[rsocket-requester]] |
||||
== RSocketRequester |
||||
|
||||
`RSocketRequester` provides a fluent API to perform RSocket requests, accepting and |
||||
returning objects for data and metadata instead of low level data buffers. It can be used |
||||
symmetrically, to make requests from clients and to make requests from servers. |
||||
|
||||
|
||||
[[rsocket-requester-client]] |
||||
=== Client Requester |
||||
|
||||
To obtain an `RSocketRequester` on the client side requires connecting to a server along with |
||||
preparing and sending the initial RSocket `SETUP` frame. `RSocketRequester` provides a |
||||
builder for that. Internally uses RSocket Java's `RSocketFactory`. |
||||
|
||||
This is the most basic way to connect with default settings: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
Mono<RSocketRequester> mono = RSocketRequester.builder() |
||||
.connectTcp("localhost", 7000); |
||||
|
||||
Mono<RSocketRequester> requesterMono = RSocketRequester.builder() |
||||
.connectWebSocket(URI.create("http://example.org:8080/rsocket")); |
||||
---- |
||||
|
||||
The above is deferred. To actually connect and use the requester: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
// Connect asynchronously |
||||
RSocketRequester.builder().connectTcp("localhost", 7000) |
||||
.subscribe(requester -> { |
||||
// ... |
||||
}); |
||||
|
||||
// Or block |
||||
RSocketRequester requester = RSocketRequester.builder() |
||||
.connectTcp("localhost", 7000) |
||||
.block(Duration.ofSeconds(5)); |
||||
---- |
||||
|
||||
|
||||
[[rsocket-requester-client-setup]] |
||||
==== Connection Setup |
||||
|
||||
`RSocketRequester.Builder` provides the following to customize the initial `SETUP` frame: |
||||
|
||||
* `dataMimeType(MimeType)` -- set the mime type for data on the connection. |
||||
* `metadataMimeType(MimeType)` -- set the mime type for metadata on the connection. |
||||
* `setupData(Object)` -- data to include in the `SETUP`. |
||||
* `setupRoute(String, Object...)` -- route in the metadata to include in the `SETUP`. |
||||
* `setupMetadata(Object, MimeType)` -- other metadata to include in the `SETUP`. |
||||
|
||||
For data, the default mime type is derived from the first configured `Decoder`. For |
||||
metadata, the default mime type is composite metadata which allows multiple metadata |
||||
value and mime type pairs per request. Typically both don't need to be changed. |
||||
|
||||
Data and metadata in the `SETUP` frame is optional. On the server side, |
||||
a `@ConnectMapping` methods can be used to handle the start of a connection and the |
||||
content of the `SETUP` frame. Metadata may include connection level security info. |
||||
|
||||
|
||||
[[rsocket-requester-client-strategies]] |
||||
==== Strategies |
||||
|
||||
`RSocketRequester.Builder` accepts `RSocketStrategies` to configure the requester. |
||||
You'll need to use this to provide encoders and decoders for (de)-serialization of data and |
||||
metadata values. By default only the basic codecs from `spring-core` for `String`, |
||||
`byte[]`, and `ByteBuffer` are registered. Adding `spring-web` provides access to more that |
||||
can be registered as follows: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
RSocketStrategies strategies = RSocketStrategies.builder() |
||||
.encoders(encoders -> encoders.add(new Jackson2CborEncoder)) |
||||
.decoder(decoders -> decoders.add(new Jackson2CborDecoder)) |
||||
.build(); |
||||
|
||||
RSocketRequester.builder() |
||||
.rsocketStrategies(strategies) |
||||
.connectTcp("localhost", 7000); |
||||
---- |
||||
|
||||
`RSocketStrategies` is designed for re-use. In some scenarios, e.g. client and server in |
||||
the same application, it may be preferable to declare it in Spring configuration. |
||||
|
||||
|
||||
[[rsocket-requester-client-responder]] |
||||
==== Client Responders |
||||
|
||||
`RSocketRequester.Builder` can be used to configure responders to requests from the |
||||
server. |
||||
|
||||
You can use annotated handlers for client-side responding based on the same |
||||
infrastructure that's used on a server, but registered programmatically as follows: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
RSocketStrategies strategies = RSocketStrategies.builder() |
||||
.routeMatcher(new PathPatternRouteMatcher()) <1> |
||||
.build(); |
||||
|
||||
ClientHandler handler = new ClientHandler(); <2> |
||||
|
||||
RSocketRequester.builder() |
||||
.rsocketFactory(RSocketMessageHandler.clientResponder(strategies, handler)) <3> |
||||
.connectTcp("localhost", 7000); |
||||
---- |
||||
|
||||
<1> Use `PathPatternRouteMatcher`, if `spring-web` is present, for efficient |
||||
route matching. |
||||
<2> Create responder that contains `@MessageMaping` or `@ConnectMapping` methods. |
||||
<3> Use static factory method in `RSocketMessageHandler` to register one or more responders. |
||||
|
||||
Note the above is only a shortcut designed for programmatic registration of client |
||||
responders. For alternative scenarios, where client responders are in Spring configuration, |
||||
you can still declare `RSocketMessageHandler` as a Spring bean and then apply as follows: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
ApplicationContext context = ... ; |
||||
RSocketMessageHandler handler = context.getBean(RSocketMessageHandler.class); |
||||
|
||||
RSocketRequester.builder() |
||||
.rsocketFactory(factory -> factory.acceptor(handler.responder())) |
||||
.connectTcp("localhost", 7000); |
||||
---- |
||||
|
||||
For the above you may also need to use `setHandlerPredicate` in `RSocketMessageHandler` to |
||||
switch to a different strategy for detecting client responders, e.g. based on a custom |
||||
annotation such as `@RSocketClientResponder` vs the default `@Controller`. This |
||||
is necessary in scenarios with client and server, or multiple clients in the same |
||||
application. |
||||
|
||||
See also <<rsocket-annot-responders>>, for more on the programming model. |
||||
|
||||
|
||||
[[rsocket-requester-client-advanced]] |
||||
==== Advanced |
||||
|
||||
`RSocketRequesterBuilder` provides a callback to expose the underlying |
||||
`ClientRSocketFactory` from RSocket Java for further configuration options for |
||||
keepalive intervals, session resumption, interceptors, and more. You can configure options |
||||
at that level as follows: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
RSocketRequester.builder() |
||||
.rsocketFactory(factory -> { |
||||
// ... |
||||
}) |
||||
.connectTcp("localhost", 7000); |
||||
---- |
||||
|
||||
|
||||
[[rsocket-requester-server]] |
||||
=== Server Requester |
||||
|
||||
To make requests from a server to connected clients is a matter of obtaining the |
||||
requester for the connected client from the server. |
||||
|
||||
In <<rsocket-annot-responders>>, `@ConnectMapping` and `@MessageMapping` methods support an |
||||
`RSocketRequester` argument. Use it to access the requester for the connection. Keep in |
||||
mind that `@ConnectMapping` methods are essentially handlers of the `SETUP` frame which |
||||
must be handled before requests can begin. Therefore, requests at the very start must be |
||||
decoupled from handling. For example: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
@ConnectMapping |
||||
Mono<Void> handle(RSocketRequester requester) { |
||||
requester.route("status").data("5") |
||||
.retrieveFlux(StatusReport.class) |
||||
.subscribe(bar -> { <1> |
||||
// ... |
||||
}); |
||||
return ... <2> |
||||
} |
||||
---- |
||||
|
||||
<1> Start the request asynchronously, independent from handling. |
||||
<2> Perform handling and return completion `Mono<Void>`. |
||||
|
||||
|
||||
|
||||
[[rsocket-requester-requests]] |
||||
=== Requests |
||||
|
||||
Once you have a <<rsocket-requester-client,client>> or |
||||
<<rsocket-requester-server,server>> requester, you can make requests as follows: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
ViewBox box = ... ; |
||||
|
||||
Flux<AirportLocation> locations = |
||||
requester.route("locate.radars.within") <1> |
||||
.data(viewBox) <2> |
||||
.retrieveFlux(AirportLocation.class); <3> |
||||
|
||||
---- |
||||
|
||||
<1> Specify a route to include in the metadata of the request message. |
||||
<2> Provide data for the request message. |
||||
<3> Declare the expected response. |
||||
|
||||
The interaction type is determined implicitly from the cardinality of the input and |
||||
output. The above example is a `Request-Stream` because one value is sent and a stream |
||||
of values is received. For the most part you don't need to think about this as long as the |
||||
choice of input and output matches an RSocket interaction type and the types of input and |
||||
output expected by the responder. The only example of an invalid combination is many-to-one. |
||||
|
||||
The `data(Object)` method also accepts any Reactive Streams `Publisher`, including |
||||
`Flux` and `Mono`, as well as any other producer of value(s) that is registered in the |
||||
`ReactiveAdapterRegistry`. For a multi-value `Publisher` such as `Flux` which produces the |
||||
same types of values, consider using one of the overloaded `data` methods to avoid having |
||||
type checks and `Encoder` lookup on every element: |
||||
|
||||
[source,java,indent=0] |
||||
[subs="verbatim,quotes"] |
||||
---- |
||||
data(Object producer, Class<?> elementClass); |
||||
data(Object producer, ParameterizedTypeReference<?> elementTypeRef); |
||||
---- |
||||
|
||||
The `data(Object)` step is optional. Skip it for requests that don't send data: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
|
||||
Mono<AirportLocation> location = |
||||
requester.route("find.radar.EWR")) |
||||
.retrieveMono(AirportLocation.class); |
||||
---- |
||||
|
||||
Extra metadata values can be added if using composite metadata (the default) and if the |
||||
values are supported by a registered `Encoder`. For example: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
String securityToken = ... ; |
||||
ViewBox box = ... ; |
||||
|
||||
Flux<AirportLocation> locations = |
||||
requester.route("locate.radars.within") |
||||
.metadata(securityToken, "message/x.rsocket.authentication.bearer.v0") |
||||
.data(viewBox) |
||||
.retrieveFlux(AirportLocation.class); |
||||
|
||||
---- |
||||
|
||||
For `Fire-and-Forget` use the `send()` method that returns `Mono<Void>`. Note that the `Mono` |
||||
indicates only that the message was successfully sent, and not that it was handled. |
||||
|
||||
|
||||
|
||||
[[rsocket-annot-responders]] |
||||
== Annotated Responders |
||||
|
||||
RSocket responders can be implemented as `@MessageMapping` and `@ConnectMapping` methods. |
||||
`@MessageMapping` methods handle individual requests, and `@ConnectMapping` methods handle |
||||
connection-level events (setup and metadata push). Annotated responders are supported |
||||
symmetrically, for responding from the server side and for responding from the client side. |
||||
|
||||
|
||||
|
||||
[[rsocket-annot-responders-server]] |
||||
=== Server Responders |
||||
|
||||
To use annotated responders on the server side, add `RSocketMessageHandler` to your Spring |
||||
configuration to detect `@Controller` beans with `@MessageMapping` and `@ConnectMapping` |
||||
methods: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
@Configuration |
||||
static class ServerConfig { |
||||
|
||||
@Bean |
||||
public RSocketMessageHandler rsocketMessageHandler() { |
||||
RSocketMessageHandler handler = new RSocketMessageHandler(); |
||||
handler.routeMatcher(new PathPatternRouteMatcher()); |
||||
return handler; |
||||
} |
||||
} |
||||
---- |
||||
|
||||
Then start an RSocket server through the Java RSocket API and plug the |
||||
`RSocketMessageHandler` for the responder as follows: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
ApplicationContext context = ... ; |
||||
RSocketMessageHandler handler = context.getBean(RSocketMessageHandler.class); |
||||
|
||||
CloseableChannel server = |
||||
RSocketFactory.receive() |
||||
.acceptor(handler.responder()) |
||||
.transport(TcpServerTransport.create("localhost", 7000)) |
||||
.start() |
||||
.block(); |
||||
---- |
||||
|
||||
`RSocketMessageHandler` supports the composite metadata and the routing metadata formats |
||||
by default. It can be configured with the <<rsocket-metadata-extractor>> to use if you |
||||
need to change that or register additional metadata mime types. |
||||
|
||||
You'll need to set the `Encoder` and `Decoder` instances required for metadata and data |
||||
formats to support. You'll likely need the `spring-web` module for codec implementations. |
||||
|
||||
By default `SimpleRouteMatcher` is used for matching routes via `AntPathMatcher`. |
||||
We recommend plugging in the `PathPatternRouteMatcher` from `spring-web` for |
||||
efficient route matching. RSocket routes can be hierarchical but are not URL paths. |
||||
Both route matchers are configured to use "." as separator by default and there is no URL |
||||
decoding as with HTTP URLs. |
||||
|
||||
`RSocketMessageHandler` can be configured via `RSocketStrategies` which may be useful if |
||||
you need to share configuration between a client and a server in the same process: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
@Configuration |
||||
static class ServerConfig { |
||||
|
||||
@Bean |
||||
public RSocketMessageHandler rsocketMessageHandler() { |
||||
RSocketMessageHandler handler = new RSocketMessageHandler(); |
||||
handler.setRSocketStrategies(rsocketStrategies()); |
||||
return handler; |
||||
} |
||||
|
||||
@Bean |
||||
public RSocketStrategies rsocketStrategies() { |
||||
retrun RSocketStrategies.builder() |
||||
.encoders(encoders -> encoders.add(new Jackson2CborEncoder)) |
||||
.decoder(decoders -> decoders.add(new Jackson2CborDecoder)) |
||||
.routeMatcher(new PathPatternRouteMatcher()) |
||||
.build(); |
||||
} |
||||
} |
||||
---- |
||||
|
||||
|
||||
|
||||
[[rsocket-annot-responders-client]] |
||||
=== Client Responders |
||||
|
||||
Annotated responders on the client side need to be configured in the |
||||
`RSocketRequester.Builder`. For details, see |
||||
<<rsocket-requester-client-responder>>. |
||||
|
||||
|
||||
|
||||
[[rsocket-annot-messagemapping]] |
||||
=== @MessageMapping |
||||
|
||||
Once <<rsocket-annot-responders-server,server>> or |
||||
<<rsocket-annot-responders-client,client>> responder configuration is in place, |
||||
`@MessageMapping` methods can be used as follows: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
@Controller |
||||
public class RadarsController { |
||||
|
||||
@MessageMapping("locate.radars.within") |
||||
public Flux<AirportLocation> radars(MapRequest request) { |
||||
// ... |
||||
} |
||||
} |
||||
---- |
||||
|
||||
You don't need to explicit specify the RSocket interaction type. Simply declare the |
||||
expected input and output, and a route pattern. The supporting infrastructure will adapt |
||||
matching requests. |
||||
|
||||
The following additional arguments are supported for `@MessageMapping` methods: |
||||
|
||||
* `RSocketRequester` -- the requester for the connection associated with the request, |
||||
to make requests to the remote end. |
||||
* `@DestinationVariable` -- the value for a variable from the pattern, e.g. |
||||
`@MessageMapping("find.radar.{id}")`. |
||||
* `@Header` -- access to a metadata value registered for extraction, as described in |
||||
<<rsocket-metadata-extractor>>. |
||||
* `@Headers Map<String, Object>` -- access to all metadata values registered for |
||||
extraction, as described in <<rsocket-metadata-extractor>>. |
||||
|
||||
|
||||
|
||||
[[rsocket-annot-connectmapping]] |
||||
=== @ConnectMapping |
||||
|
||||
`@ConnectMapping` handles the `SETUP` frame at the start of an RSocket connection. |
||||
It can be mapped with a pattern, like an `@MessageMapping` method, and it supports the |
||||
same arguments as an `@MessageMapping` method but based on the content of the `SETUP` |
||||
frame. |
||||
|
||||
`@ConnectMapping` methods also handle metadata push notifications through |
||||
the `METADATA_PUSH` frame, i.e. the `metadataPush(Payload)` in `io.rsocket.RSocket`. |
||||
|
||||
|
||||
|
||||
[[rsocket-metadata-extractor]] |
||||
== MetadataExtractor |
||||
|
||||
Responders must interpret metadata. |
||||
https://github.com/rsocket/rsocket/blob/master/Extensions/CompositeMetadata.md[Composite metadata] |
||||
allows independently formatted metadata values (e.g. for routing, security, tracing) each |
||||
with its own mime type. Applications need a way to configure metadata mime types to |
||||
support, and a way to access extracted values. |
||||
|
||||
`MetadataExtractor` is a contract to take serialized metadata and return decoded |
||||
name-value pairs that can then be accessed like headers by name, for example via `@Header` |
||||
in annotated handler methods. |
||||
|
||||
`DefaultMetadataExtractor` can be given `Decoder` instances to decode metadata. Out of |
||||
the box it has built-in support for routing metadata ("message/x.rsocket.routing.v0"), |
||||
which it decodes to `String` and saves under the "route" key. For any other mime type |
||||
you'll need to provide a `Decoder` and register the mime type as follows: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
DefaultMetadataExtractor extractor = new DefaultMetadataExtractor(metadataDecoders); |
||||
extractor.metadataToExtract(fooMimeType, Foo.class, "foo"); |
||||
---- |
||||
|
||||
Composite metadata works well to combine independent metadata values. However the |
||||
requester might not support composite metadata, or may choose not to use it. For this, |
||||
`DefaultMetadataExtractor` may needs custom logic to map the decoded value to the output |
||||
map. Here is an example where JSON is used for metadata: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
DefaultMetadataExtractor extractor = new DefaultMetadataExtractor(metadataDecoders); |
||||
extractor.metadataToExtract( |
||||
MimeType.valueOf("application/vnd.myapp.metadata+json"), |
||||
new ParameterizedTypeReference<Map<String,String>>() {}, |
||||
(jsonMap, outputMap) -> { |
||||
outputMap.putAll(jsonMap); |
||||
}); |
||||
---- |
||||
|
||||
When configuring `MetadataExtractor` through `RSocketStrategies`, you can let |
||||
`RSocketStrategies.Builder` create the extractor with the configured decoders, and |
||||
simply use a callback to customize registrations as follows: |
||||
|
||||
[source,java,indent=0,subs="verbatim,quotes",role="primary"] |
||||
.Java |
||||
---- |
||||
RSocketStrategies strategies = RSocketStrategies.builder() |
||||
.metadataExtractorRegistry(registry -> { |
||||
registry.metadataToExtract(fooMimeType, Foo.class, "foo"); |
||||
// ... |
||||
}) |
||||
.build(); |
||||
---- |
Loading…
Reference in new issue