As of EclipseLink 2.4.0 - Juno this is not sufficient to log
SQL parameter binding. Additionally,
eclipselink.logging.parameters must be enabled.
Issue: SPR-16383
This commit introduces the following changes.
1) It adds a new Spring @NonNull annotation which allows to apply
@NonNullApi semantic on a specific element, like @Nullable does.
Combined with @Nullable, it allows partial null-safety support when
package granularity is too broad.
2) @Nullable and @NonNull can apply to ElementType.TYPE_USE in order
to be used on generic type arguments (SPR-15942).
3) Annotations does not apply to ElementType.TYPE_PARAMETER anymore
since it is not supported yet (applicability for such use case is
controversial and need to be discussed).
4) @NonNullApi does not apply to ElementType.FIELD anymore since in a
lot of use cases (private, protected) it is not part for the public API
+ its usage should remain opt-in. A dedicated @NonNullFields annotation
has been added in order to set fields default to non-nullable.
5) Updated Javadoc and reference documentation.
Issue: SPR-15756
This commit ensure that null-safety is consistent between
getters and setters in order to be able to provide beans
with properties with a common type when type safety is
taken in account like with Kotlin.
It also add a few missing property level @Nullable
annotations.
Issue: SPR-15792
This commits extends nullability declarations to the field level, formalizing the interaction between methods and their underlying fields and therefore avoiding any nullability mismatch.
Issue: SPR-15720
Beyond just formally declaring the current behavior, this revision actually enforces non-null behavior in selected signatures now, not tolerating null values anymore when not explicitly documented. It also changes some utility methods with historic null-in/null-out tolerance towards enforced non-null return values, making them a proper citizen in non-null assignments.
Some issues are left as to-do: in particular a thorough revision of spring-test, and a few tests with unclear failures (ignored as "TODO: NULLABLE") to be sorted out in a follow-up commit.
Issue: SPR-15540
This commit introduces 2 new @Nullable and @NonNullApi
annotations that leverage JSR 305 (dormant but available via
Findbugs jsr305 dependency and already used by libraries
like OkHttp) meta-annotations to specify explicitly
null-safety of Spring Framework parameters and return values.
In order to avoid adding too much annotations, the
default is set at package level with @NonNullApi and
@Nullable annotations are added when needed at parameter or
return value level. These annotations are intended to be used
on Spring Framework itself but also by other Spring projects.
@Nullable annotations have been introduced based on Javadoc
and search of patterns like "return null;". It is expected that
nullability of Spring Framework API will be polished with
complementary commits.
In practice, this will make the whole Spring Framework API
null-safe for Kotlin projects (when KT-10942 will be fixed)
since Kotlin will be able to leverage these annotations to
know if a parameter or a return value is nullable or not. But
this is also useful for Java developers as well since IntelliJ
IDEA, for example, also understands these annotations to
generate warnings when unsafe nullable usages are detected.
Issue: SPR-15540
This commit also changes "hibval5Version" to the more general "hibvalVersion" build variable, and includes dependency updates to Caffeine 2.5.1 and JRuby 9.1.9.
Issue: SPR-13482
String with version 5 the name of Java Platform, Enterprise Edition
changed from J2EE to Java EE. However a lot of the documentation still
uses the term J2EE.
This commit includes the following changes:
* replace J2EE with Java EE where appropriate
This is not a blind search and replace. The following occurrences
remain unchanged:
* references to old J2EE releases, most notably 1.3 and 1.4.
* references to "Expert One-On-One J2EE Design and Development"
* references to "Core J2EE patterns"
* XML namespaces
* package names
Issue: SPR-14811
See gh-1206
This commit adds a "spring-context-indexer" module that can be added to
any project in order to generate an index of candidate components defined
in the project.
`CandidateComponentsIndexer` is a standard annotation processor that
looks for source files with target annotations (typically `@Component`)
and references them in a `META-INF/spring.components` generated file.
Each entry in the index is the fully qualified name of a candidate
component and the comma-separated list of stereotypes that apply to that
candidate. A typical example of a stereotype is `@Component`. If a
project has a `com.example.FooService` annotated with `@Component` the
following `META-INF/spring.components` file is generated at compile time:
```
com.example.FooService=org.springframework.stereotype.Component
```
A new `@Indexed` annotation can be added on any annotation to instructs
the scanner to include a source file that contains that annotation. For
instance, `@Component` is meta-annotated with `@Indexed` now and adding
`@Indexed` to more annotation types will transparently improve the index
with additional information. This also works for interaces or parent
classes: adding `@Indexed` on a `Repository` base interface means that
the indexed can be queried for its implementation by using the fully
qualified name of the `Repository` interface.
The indexer also adds any class or interface that has a type-level
annotation from the `javax` package. This includes obviously JPA
(`@Entity` and related) but also CDI (`@Named`, `@ManagedBean`) and
servlet annotations (i.e. `@WebFilter`). These are meant to handle
cases where a component needs to identify candidates and use classpath
scanning currently.
If a `package-info.java` file exists, the package is registered using
a "package-info" stereotype.
Such files can later be reused by the `ApplicationContext` to avoid
using component scan. A global `CandidateComponentsIndex` can be easily
loaded from the current classpath using `CandidateComponentsIndexLoader`.
The core framework uses such infrastructure in two areas: to retrieve
the candidate `@Component`s and to build a default `PersistenceUnitInfo`.
Rather than scanning the classpath and using ASM to identify candidates,
the index is used if present.
As long as the include filters refer to an annotation that is directly
annotated with `@Indexed` or an assignable type that is directly
annotated with `@Indexed`, the index can be used since a dedicated entry
wil be present for that type. If any other unsupported include filter is
specified, we fallback on classpath scanning.
In case the index is incomplete or cannot be used, The
`spring.index.ignore` system property can be set to `true` or,
alternatively, in a "spring.properties" at the root of the classpath.
Issue: SPR-11890